Spin polarization of electrons with Rashba double-refraction
نویسنده
چکیده
Abstract. We demonstrate how the Rashba spin-orbit coupling in semiconductor heterostructures can produce and control a spin-polarized current without ferromagnetic leads. Key idea is to use spin-double refraction of an electronic beam with a nonzero incidence angle. A region where the spin-orbit coupling is present separates the source and the drain without spin-orbit coupling. We show how the transmission and the beam spin-polarization critically depend on the incidence angle. The transmission halves when the incidence angle is greater than a limit angle and a significant spin-polarization appears. Increasing the spin-orbit coupling one can obtain the modulation of the intensity and of the spin-polarization of the output electronic current when the input current is unpolarized. Our analysis shows the possibility to realize a spin-field-effect transistor based on the propagation of only one mode with the region with spin-orbit coupling. Where the original Datta and Das device [Appl.Phys.Lett. 56, 665 (1990)] use the spin-precession that originates from the interference between two modes with orthogonal spin.
منابع مشابه
Electron scattering from a mesoscopic disk in Rashba system
Electrons with spin-orbit coupling moving in mesoscopic structures can often exhibit local spin polarization. In this paper, we study the influence of the Rashba coupling on the scattering of two-dimensional electrons from a circular disk. It is observed that spin-polarized regions exist, even if the incident electrons are unpolarized. In addition to the distributions of charge and spin current...
متن کاملThe spin-double refraction in two-dimensional electron gas
We briefly review the phenomenon of the spin-double refraction that originates at an interface separating a two-dimensional electron gas with Rashba spin-orbit coupling from a one without. We demonstrate how this phenomenon in semiconductor heterostructures can produce and control a spin-polarized current without ferromagnetic leads.
متن کاملEnhancement of spin polarization by chaos in graphene quantum dot systems
When graphene is placed on a substrate of heavy metal, the Rashba spin-orbit interaction of substantial strength can occur. In an open system such as a quantum dot, the interaction can induce spin polarization. Would classical dynamics have any effect on the spin polarization? Here we consider the quantum-dot setting, where the Rashba interaction is confined within the central scattering region...
متن کاملFano-Rashba effect in quantum dots.
We consider the electronic transport through a Rashba quantum dot coupled to ferromagnetic leads. We show that the interference of localized electron states with resonant electron states leads to the appearance of the Fano-Rashba effect. This effect occurs due to the interference of bound levels of spin-polarized electrons with the continuum of electronic states with an opposite spin polarizati...
متن کاملnoise for entangled and spin - polarized electrons
We review our recent contributions on shot noise for entangled electrons and spin-polarized currents in novel mesoscopic geometries. We first discuss some of our recent proposals for electron entanglers involving a superconductor coupled to a double dot in the Coulomb blockade regime, a superconductor tunnel-coupled to Luttinger-liquid leads, and a triple-dot setup coupled to Fermi leads. We br...
متن کامل